the ring of real-valued functions on a frame

نویسندگان

abolghasem karimi feizabadi

department of mathematics, gorgan branch, islamic azad university, gorgan, iran. ali akbar estaji

faculty of mathematics and computer sciences, hakim sabzevari university, sabzevar, iran. mohammad zarghani

faculty of mathematics and computer sciences, hakim sabzevari university, sabzevar, iran.

چکیده

in this paper, we define and study the notion of the real-valued functions on a frame $l$. we show that $f(l) $, consisting of all frame homomorphisms from the power set of $mathbb{r}$ to a frame $ l$, is an $f$-ring, as a generalization of all functions from a set $x$ into $mathbb r$. also, we show that $f(l) $ is isomorphic to a sub-$f$-ring of $mathcal{r}(l)$, the ring of real-valued continuous functions on $l$. furthermore, for every frame $l$, there exists a boolean frame $b$ such that $f(l)$ is a sub-$f$-ring of $ f(b)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ring of real-valued functions on a frame

In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...

متن کامل

INTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME

A frame $L$ is called {it coz-dense} if $Sigma_{coz(alpha)}=emptyset$ implies $alpha=mathbf 0$. Let $mathcal RL$ be the ring of real-valued continuous functions on a coz-dense and completely regular frame $L$. We present a description of the socle of the ring $mathcal RL$ based on minimal ideals of $mathcal RL$ and zero sets in pointfree topology. We show that socle of $mathcal RL$ is an essent...

متن کامل

The ring of real-continuous functions on a topoframe

 A topoframe, denoted by $L_{ tau}$,  is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in $L$. In this paper, we define and study the notions of a $tau $-real-continuous function on a frame $L$ and the set of real continuous functions $mathcal{R}L_tau $ as an $f$-ring. We show that $mathcal{R}L_{ tau}$ is actually a generali...

متن کامل

When is the ring of real measurable functions a hereditary ring?

‎Let $M(X‎, ‎mathcal{A}‎, ‎mu)$ be the ring of real-valued measurable functions‎ ‎on a measure space $(X‎, ‎mathcal{A}‎, ‎mu)$‎. ‎In this paper‎, ‎we characterize the maximal ideals in the rings of real measurable functions‎ ‎and as a consequence‎, ‎we determine when $M(X‎, ‎mathcal{A}‎, ‎mu)$ is a hereditary ring.

متن کامل

the ring of real-continuous functions on a topoframe

a topoframe, denoted by $l_{ tau}$,  is a pair $(l, tau)$ consisting of a frame $l$ and a subframe $ tau $ all of whose elements are complementary elements in$l$. in this paper, we define and study the notions of a$tau $-real-continuous function on a frame $l$ and the set of realcontinuous functions $mathcal{r}l_tau $ as an $f$-ring.we show that $mathcal{r}l_{ tau}$is actually a generalization ...

متن کامل

Pointfree topology version of image of real-valued continuous functions

Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree  version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree  version of $C_c(X).$The main aim of this paper is to present t...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
categories and general algebraic structures with application

جلد ۵، شماره ۱، صفحات ۸۵-۱۰۲

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023